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Ultrafast magnetization dynamics in diluted magnetic semiconductors is investigated using a model based on
the pseudofermion formalism and a third-order many-particle expansion of the exact pd exchange interaction.
Dynamical RKKY-like interactions and double-exchange mechanism based on the Kondo interaction emerge
naturally from our approach. Our analysis reveals that the many-particle expansion is not generally well
defined and an infrared Kondo-like divergence can occur. In particular, the bare polarization propagator fails to
converge in the presence of a highly confined hole gas and an enhancement of the ion-hole spin correlation is
found for low-dimensional systems. Finally, numerical simulations have been performed on GaMnAs and show
that dynamical many-particle correlations play a significant role in the time evolution of the total
magnetization.
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I. INTRODUCTION

From the pioneering work by Kondo of the anomalous
resistivity at low temperature in metals doped with very few
magnetic impurities,1,2 diagrammatic expansion of the ex-
change interaction between the magnetic species and the
conduction electrons has been a tool of primary importance
for the understanding of the microscopical processes under-
lying the observed phenomena. The apparently simple spin-
spin exchange interaction postulated by Kondo has revealed
a great source of difficulties from both mathematical and
physical interpretation points of view. While the original ap-
proach followed by Kondo was able to exhibit the primary
role played by the spin interaction in the scattering processes
between the magnetic impurities and the conduction elec-
trons, the appearance of various divergent terms in the resis-
tivity expansion has early revealed the limits of this ap-
proach. Since then, in spite of the great theoretical effort
which has been devoted to overcome the technical difficul-
ties and to obtain a clear understanding of the thermody-
namical properties of a gas of itinerant fermions interacting
with well spatially localized spins, at present, little is known
about the dynamical aspects of such systems. With the avail-
ability of ultrashort and intense optical sources operating in
the femtosecond time scale it is nowadays possible to induce
and to investigate nonequilibrium regimes in Kondo-like sys-
tems such as, for example, demagnetization processes in di-
luted magnetic semiconductors �DMS�.3 In particular, one of
the most frequently studied material is the III-V semiconduc-
tor gallium arsenide, doped with manganese �GaMnAs�, for
which the Curie temperature �which is an increasing function
of the manganese concentration� can attain the value of
172.5 K.4

The ultrafast demagnetization in a DMS is a phenomenon
where the Kondo exchange interaction causes a flow of spin
polarization and energy from the magnetic-ion impurities to
the charge carriers, which is subsequently converted to or-
bital momentum and then thermalized through spin-orbit and
hole-hole interactions. The first attempt to outline a micro-

scopical interpretation to the ultrafast spin dynamics for me-
tallic films was given in Ref. 5 and, later, few models have
been developed to reproduce quantitatively the observed
time-dependent magnetization of DMS.6–8 The latter are
based on the Markovian hypothesis and the scattering be-
tween the holes and the magnetic ions, which is modeled at
the first order in the Dyson expansion. At this level of ap-
proximation, all dynamical higher-order correlation terms
beyond the random-phase approximation are discarded.

Recently, a theoretical study reported in Ref. 9 was ad-
dressed to quantify the effect of the dynamical spin correla-
tion in DMS. In their study, the exchange interaction is ex-
panded in terms of the asymptotic parameter 1 /S, where S is
the total spin of the ion. This study has revealed the onset of
strong correlation effects beyond the random-phase approxi-
mation. Unfortunately, the authors did not provide a signa-
ture of these effects on a macroscopical quantity such as the
mean magnetization of the sample or the Curie temperature.
Within the Kondo lattice framework, in Ref. 10, the spin-
dynamical properties of the system have been derived
through the study of the thermal magnon excitations. The
closure of the many-particle Green’s-function hierarchy is
resolved by the application of the Tyablikov decoupling hy-
pothesis. A different approach is proposed in Ref. 11 where a
method for performing atomistic spin-dynamics simulations
is presented. In their approach the ions are treated as para-
magnetic atomic moments and their evolution is given by the
phenomenological Landau-Lifshitz-Gilbert equation. The en-
ergy dissipation of the system is described in terms of a
single ad hoc damping parameter. The linking with the mi-
croscopical dynamics is provided by the Langevin equation.
The spatial-dependent exchange parameter included in the
spin dynamics simulations are calculated within the density-
functional theory and are strongly direction dependent. In
Ref. 12, the magnetism evolution in a DMS has been inves-
tigated by means of atomistic spin-dynamics simulations
where the interatomic exchange interaction is calculated self-
consistently. In analogy with the Born-Oppenheimer ap-
proximation, this procedure relies on the adiabatic approxi-
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mation. The time evolution of the orientations of the atomic
spins corresponds to the slow nuclear motion and the relax-
ation of the electron system toward the instantaneous direc-
tions of the magnetic moments is related to the fast time
evolution. Within this approximation, the equations of mo-
tion for the atomic spins and for the electronic degrees of
freedom may be solved separately. Contrary to the model of
Ref. 12, in the present work the dynamical effects under a
strong laser excitation are carefully reproduced, by allowing
the time evolution of the ion-hole spin correlations and the
off-diagonal components of the electronic density matrix to
take place at the same time scale.

In order to obtain a proper description of the spin-spin
dynamical correlation effects, we derive in this work an ab
initio model. A special attention has been paid to relate the
microscopic correlation effects to the time evolution of mac-
roscopic quantities of the material like the mean magnetiza-
tion. Our method is able to treat the dynamical particle-
particle correlations beyond the mean-field approximation,
allowing to a more accurate description of the magnetization
dynamics. It is based on the application of the Abrikosov
pseudofermion formalism and the inclusion of terms up to
the third order in the expansion of the Kondo interaction. In
particular, the present model extends the results derived in
Ref. 8 where only second-order terms had been retained. The
Abrikosov approach is particularly suitable to treat ion with
high spin number such as manganese. Indeed, it is well
known that, in the second quantization formalism, almost all
the standard theorems concerning the many-particle expan-
sion of the contour-ordered operators like the Wick theorem
for the Green’s function are based on elementary commuta-
tion rules for the creation and annihilation operators. The
lack of simple properties of the commutation relations for the
magnetic-ion spin operators �with spin number greater than
1/2� prevents the use of a systematic expansion procedure
such as the Feynman diagram expansion to obtain high-order
interaction terms. In order to circumvent this technical diffi-
culty, a theoretical study of the Kondo-type interaction needs
a special treatment. Abrikosov proposed an approach based
on the use of fictive particles �pseudofermions� which for-
mally preserve the standard commutation rules of spin-1/2
particles.13 Unfortunately, this formalism introduces unphysi-
cal states in the Hilbert space of the magnetic ions for which
the impurity sites are allowed to be multiply occupied.
Therefore, a suitable limit procedure is required in order to
recover the correct physical description of the magnetic spe-
cies.

The paper is organized as follows: in Sec. II A a brief
description of the pseudo-fermion formalism and its main
properties are given. Special emphasis is put on the deriva-
tion of a set of rules. These latter are needed to evaluate the
physically correct Green’s function of the system using the
many-body expansion procedure applied to the interaction
between the fictitious Abrikosov particles. In Sec. II B the
equations of motion of the mean magnetization for a system
composed of two different types of spin particles and inter-
acting via a Kondo-type scattering term are derived. In Sec.
II C, the polarization propagator �which is the most interest-
ing quantity in our model� is evaluated up to the third order
in the interaction and its properties are discussed. As an ap-

plication, in Sec. III we have applied our model to the study
of the out-of-equilibrium magnetization dynamics in a DMS
excited by a laser pulse. Numerical results are presented and
the role played by the order of the interaction is discussed.
Finally, the paper is ended with concluding remarks.

II. MODEL

A. Pseudofermion limit

We describe the time evolution of two different popula-
tions of particles �hereafter the symbols h and M are used to
represent the holes and the magnetic ions, respectively� in
the second quantization formalism. We denote by ak,s

† �ak,s�
and b�,m

† �b�,m� the creation �annihilation� operators of a hole
having a spin s and a quasimomentum k and a pseudofer-
mion ion with spin m and spatial position R�, respectively. In
particular, the b operator denotes the Abrikosov pseudofer-
mion operator which gives the correct physical states pro-
vided that one and only one particle can be found in each ion

site, i.e., n̂�=�m=−SM
SM

n̂�
m=1, where n̂�

m=b�,m
† b�,m∀� and SM

=5 /2. The time evolution of the system is governed by the
Hamiltonian

H = �
k,s

�k,sak,s
† ak,s + Hpd. �1�

In the parabolic band approximation the kinetic energy of the
holes reads �k,s=Eh−�2k2 /2m�, where Eh is the valence band
edge and m� is the effective mass of the hole. The Kondo-
like exchange interaction Hpd is given by

Hpd = � �bm�
† bmas�

† as�Vm�,m,s�,s, �2�

Vm�,m,s�,s =
�pd

V
��,��e

i�R�k−R��k��Jm�,m · �s�,s, �3�

where the sum is extended over all indices and the compact
notations m��� ,m�, s��k ,s� have been employed. �pd is
the p-d coupling constant, V is the volume of the system, and
� ,J, are the spin matrices related to the holes and the ions,
respectively. To recover the correct ion-hole exchange inter-
action �where the ion sites are singly occupied�, following
Refs. 13 and 14 we add a “fictitious” ionic chemical potential
H�=����n̂� to the original Hamiltonian and we let �� go to
infinity at the end of the calculation. The grand-canonical
expectation value of a generic operator A in the pseudofer-
mion space is defined in the usual way,

�A��
PF =

1

Z�
PFTr��H exp�− ��

�

��n̂�	A

=

1

Z�
PF �

�n�
m�r

�n�
m�H exp�− ��

�

��n̂�	An�
m� , �4�

where Z�
PF=Tr��H exp�−�����n̂���, �H=e−�H, and �

=1 /kBT, with kB the Boltzmann constant and T the tempera-

ture. �n�
m�r= �n1

1 , . . . ,nr
�2SM+1�� denotes all possible occupation

numbers n�
k �=0 or 1� for r ion sites. By following

Coleman,14 the correct expectation value of the operator A is
obtained by using the limit
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�A�F =
1

ZF lim
�z��→0

�r��A��
PFZ�

PF�
�z1 ¯ �zr

, �5�

where ZF=lim�z��→0 ��rZPF� / ��z1¯�zr� and z�=e−���. The
expectation value of a generic operator �A��

PF defined on the
Abrikosov pseudofermion space can be expanded in the
usual way by means of the Wick theorem. As a final result,
the Langreth theorem for the time-ordered product ensures
that the expectation value can be expressed as a product of
simpler single-particle Green’s functions. As a final result
�A��

PF can be expanded as follows:

�A��
PF = �

	
�

��X

A�
	 �G�


�g�
	
�G�

��l�
	
, �6�

where the pseudofermion �less-than G�
� and greater-than G�


�
Green’s functions are defined as in Eq. �4� with A
=b�,m

† b�,m�A†=b�,mb�,m
† �. For the sake of simplicity, the in-

dex m in the Green’s functions is not explicitly mentioned.
A�

	 are the expansion coefficients of �Aw��
PF on the monomial

G�

G�

� for a given couple of the exponents g�
	 , l�

	 and for
which, the explicit form depends on the details of the inter-
action. X denotes the different ion sites appearing in the Aw

	

expansion. The fermionic limit of Eq. �5� applied to Eq. �6�
leads to a very simple expression. Indeed, we have

�Aw�F = �
	

�
��X

A�
	 �l

�
	 ,1G�

�, �7�

where G�
�= �1 /ZF�lim�z��→0 ��r�G�

�Z�
PF��� /�z1¯�zr� is the

physically correct Green’s function in the fermionic limit. A
detailed derivation of Eq. �7� is given in Ref. 15. The above
expression shows that, in the Abrikosov-Coleman formalism,
the fermionic limit can be easily recovered through the usual
many-particle expansion applied to the pseudofermion
Green’s ion propagator. In particular, Feynman diagrams
containing more than one single less-than Green’s function
for each ion site vanish in the pseudofermion limit and the
greater-than Green’s functions reduce to identity. Differing
from the original Abrikosov approach, the Coleman limit
procedure allows us to recover the expression of the many-
particle expansion in the physical space directly in terms of
the corresponding Green’s functions G, with their explicit
expressions being not needed. Therefore, this procedure may
be successfully applied to describe dynamical properties of
Kondo-type systems �such as a DMS� for which, nonequilib-
rium Green’s functions cannot be approximated by multipole
functions in the energy representation.

B. Equations of motion

The time evolution of the mean magnetization of a DMS
can be directly related to the evolution of the hole and ion
polarization propagators which are defined as follows �see,
for example, Ref. 16�:

i�m,s,m�,s� = − lim
t�→t+

Gm,s,m�,s�
II �t,t,t�,t�� ,

where the two-particle Green’s function GII is given by

Gm,s,m�,s�
II �t,t1,t�,t1�� = −

1

Z�
PFTr�exp�− ��

�

��n̂�	
T�bm�t�as�t1�bm�

† �t��as�
† �t1���
 ,

where T denotes the usual time-ordering operator. The anni-
hilation and creation operators are expressed in the Heisen-
berg’s formalism as bm�t�=e�i/��H�t−t0�bme−�i/��H�t−t0�. The
time-evolution equation for the mean densities, ns
��1 /Nh��k�ak,s

† ak,s� and nm��1 /NM����b�,m
† b�,m�, can be

easily derived from the Heisenberg equations of motion,8

i�
dns

dt
=

1

Nh�
m

Ws,m, �8�

i�
dnm

dt
=

1

NM �
s

Ws,m, �9�

Ws,m =
�pd

V
�

s�,m�

�m�,m,s�,s �
k,k�,�,��

��,���e
iR��k−k���m�,m,s�,s

− e−iR��k−k���m,m�,s,s�� , �10�

where �m�,m,s�,s=Jm�,m ·�s�,s and Nh, NM are the total density
of holes and ions, respectively. We calculate the diagram-
matic expansion of the polarization propagator up to the third
order in the interaction V. Within the first order, the static
spin polarization is taken into account at a mean-field level.
The second-order term represents the exchange scattering
process between the ions localized at the R� positions and
the itinerant holes within the same Wigner-Seitz cell. At this
level of approximation, the spin flux between the two popu-
lations of particles is modeled via detailed balance equations.
These contributions have been analyzed in detail in a series
of works.7,8,17 Despite the fact that the second-order approxi-
mation is able to qualitatively reproduces the observed dy-
namical behavior of the total magnetization in a DMS, recent
works have revealed that ground-state properties of the DMS
cannot be properly reproduced within a first-order Zener
mean-field model.18 Therefore, it is natural to expect a cor-
responding non-negligible correction on the dynamical prop-
erties and, in particular, on the time evolution of the total
magnetization. Within the mean-field approximation magne-
tization fluctuations are neglected and generally the theoret-
ical models lead to an overestimation of the magnitude of the
Curie temperature. In Ref. 19 it is shown that double-
exchange and superexchange mechanisms can play an im-
portant role on the static polarization of a DMS. According
to these considerations the present work is addressed to the
study of the third-order exchange contributions and its influ-
ence on the time evolution of the total magnetization in a
DMS. We will give a physical interpretation of the different
terms which appear in the model. Finally, analogies with
similar processes derived within different theoretical frame-
works will be also discussed.
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C. Polarization propagator: Physical interpretation and
renormalization

The nonvanishing third-order Feynman diagrams of � are
represented in Fig. 1 and provide a clear physical interpreta-
tion of the third-order ion-hole scattering processes. The
green-continuous �blue-continuous� lines represent the
pseudoparticle �hole� propagator and the dashed lines denote
the exchange interaction. Diagrams in Figs. 1�a�–1�c� de-
scribe the multiple exchange interaction between the holes
and an ion localized at a single site �denoted by ��, while the
second group of diagrams �Figs. 1�d�–1�f�� represent the ex-
change interactions involving two different ion sites. In the
latter, an excited state containing a quantum entanglement
between the ion and the hole spin is initially created at R�

and subsequently undergoes a further spin-exchange interac-
tion at a different site R��: the itinerant character of the hole
Bloch wave establishes a hole-mediated correlation between
two different ion sites. Since the ion does not possess kinetic
energy, any movement from its spatial position is forbidden
and consequently the bare ion Green’s function is diagonal
with respect to the variable R�. Thus, the subdiagram where
all the interaction vertices are connected by an ion propaga-
tor represent local-in-space processes �see, for example, Ref.
14 for a general discussion of the Kondo-Feynman diagram
method�. Going more into details, the diagram in Fig. 1�d�
�similar considerations apply to the other diagrams� de-
scribes dynamical polarization effects of the holes-ions sys-
tem where, at the time t, a spin entanglement is created at R�

between a hole �with spin down, for example� and an ion

pseudoparticle. Subsequently, the hole travels toward the site
R�1

where, at t= t1 it interacts with the ion located there,
raising its spin and a hole-ion excited state is created. Re-
combination arises at t= t2 where the hole lowers its spin
again. Finally, the initial unexcited state is recovered at t
= t� where the hole interacts with the ion at R�. The ion-hole
bubble mediates the carrier-induced ion spin couplings, and
the oscillatory long-range part of the spin interaction is re-
produced by a dynamical out-of-equilibrium RKKY-like
phenomenon. Usually it is postulated that the RKKY inter-
action plays the major role in the ion-ion hole-mediated in-
teraction and the exchange interaction is written as Hpd
=�i,jJij

RKKYSi ·S j, where Si is the ion spin at site Ri and
Jij

RKKY =J0r−4�sin�2kFr�−2kFr cos�2kFr��. J0 is the local Ze-
ner coupling parameter and kF is the Fermi momentum of the
holes.18,20 In order to derive the RKKY interaction the hole
degrees of freedom are integrated out, so that the hole distri-
bution plays essentially a rather minor role in the polariza-
tion processes and enters in the model only through the mean
Fermi momentum �or the susceptibility�. On the contrary, in
our approach, the RKKY interaction emerges naturally from
the pseudofermion expansion of the exchange interaction and
the associated formalism is able to describe strong-out-
equilibrium hole distribution as it is the case after a pulse
laser excitation. This statement will be confirmed in the fol-
lowing where we present an explicit evaluation of the polar-
ization propagators associated with the diagrams in Figs.
1�b�–1�d�: the hole-mediated interaction depends on the en-
ergy integral of the out-of-equilibrium hole distribution
which dynamically evolves during the demagnetization pro-

(a) (b) (c)

(d) (e) (f)

FIG. 1. �Color online� Third-order diagrammatic expansion of the hole-Mn spin-exchange interaction.
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cesses. In Ref. 18 it is shown that spin-interacting models
based on the mean-field approximation are not able to accu-
rately model the static characteristics and, in particular, they
overestimate both the Curie temperatures and the stability of
ferromagnetic materials as a function of the charge-carrier
density. Therefore, models able to take in account phenom-
ena occurring beyond the mean-field approximation can pro-
vide a deeper insight of the nontrivial time evolution of the
total magnetization of a magnetic semiconductor.

In what follows, we give the details of the calculation of
the contributions to the equation of motion �10� arising from
the diagrams in Figs. 1�b�–1�d� �the other terms are treated
similarly�. We have

�m,s,m�,s�
b = −

1

2 �
m1,s1

Vm1,m�,s,s1
Vm,m1,s1,s� �

�i,j,k�
Ii,j,k, �11�

Ii,j,k =� G̃m,s�
i �t,t2�G̃m1,s1

j �t2,t1�G̃m�,s
k �t1,t+�dt1dt2, �12�

where �i , j ,k�= �� ,a ,a� ; �r , � ,a� ; �r ,r ,�� and the Langreth
theorem has been used. To ease notation we have defined

G̃m,s�t , t1�� MGm,m�t , t1�hGs,s�t1 , t�, where MGm,m and hGs,s de-
note the pseudofermion Green’s function for the holes and
for the ions, respectively. Explicitly we have

MGm,m�t2,t1� =
1

Z�
PF

Tr�exp�− ��
�

��n̂�	T�bm�t2�bm
† �t1��
 ,

�13�

and since the hole Green’s function does not depend on the
ion degrees of freedom its limit �→� trivially leads to the
usual definition of the Green’s function,

hGs,s�t2,t1� =
��T�as�t2�as�

† �t1����

����
, �14�

where � denotes the many-particle wave function containing
only the hole degrees of freedom. The superscripts a �r� and
� �
 � denote, respectively, the usual advanced �retarded�
and less- �greater-� than functions and whose definition is
given as usually in analogy with Eqs. �13� and �14�. Equation
�12� is of the form

C�t,t�� = �
−�

�

A�t,t2�B�t2,t��dt2.

We define the temporal variables T= �t+ t�� /2 and �= t− t�.

We have the following gradient expansion of Ĉ�� ,T�
��C�� ,T�ei��d� �Ref. 21�:

Ĉ��,T� = Â��,T�e�1/2i���T
����−��

��T��B̂��,T� .

If we apply the previous formula to Eq. �12� retaining only
the lowest-order contribution of the gradient expansion we
obtain

Ii,j,k =� � G̃m,s�
i �t − t2,T�

G̃m1,s1

j �t2 − t1,T�G̃m�,s
k �t1 − t,T�dt1dt2.

Following the pseudofermion limit procedure outlined in
Sec. II A, in the limit �→� the only nonvanishing contribu-
tion of Ir,r,� is �I�,a,a and Ir,�,a can be treated similarly�

lim
�→�

Ir,r,� = �
−�

t �
−�

t2

G̃m,s�

 �t − t2,T�G̃m1,s1


 �t2 − t1,T�

G̃m�,s
� �t1 − t,T�dt1dt2.

In the quasiparticle approximation G̃m,s�

 �t− t2 ,T�

� G̃ms�

 �T�e−i�Em+Es���t−t2�, where Em �Es� is the eigenvalue of

the ion �hole� state described by the quantum numbers m �s�.
In this case the previous formula reduces to

lim
�→�

Ir,r,� � G̃m,s�

 �T�G̃m1,s1


 �T�G̃m�,s
� �T�� i

�m,s�
m�,s + i�

	
� i

�m1,s1

m�,s + i�	 ,

with

�m,s
m�,s� = Em� − Em + Es� − Es,

and where we have used the Dirac formula

�
−�

t

ei��+i���t−t1�dt1 =
i

� + i�
= ����� + iP 1

�

for a small � and P denotes the principal value. We are
interested in studying the properties of the time-dependent
polarization propagator: for the sake of clearness we report
here the explicit form of the single-site diagram �Fig. 1�b��
and the two-site diagram �Fig. 1�d�� �denoted by �b and �d,
respectively�. After a rather cumbersome algebra we obtain

�
�,��

��,���m�,m,s�,s
b eiR��k−k��

= − i2��pd
2 NM �

m1,s1

�m,m1,s1,s��m1,m�,s,s1
nm�

hGs�
� hGs


Fs1

�

��m1,s1

m�,s + Ek���Ek − Ek� + �m,s�
m�,s� ,

�
�,��

��,���m�,m,s�,s
d eiR��k−k��

= i4�2�pd
2 �NM�2nm�m,m� �

m1,s1,m2

�m1,m2,s,s1
�m2,m1,s1,s�Q ,

where

Q =� � kk�

�d�2sin��d�k�sin��d�k���hGs�
� hGs


 − hGs
� hGs�


�

�15�
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�nm1
Fs1


��̃� − nm2
Fs1

���̃����Es� − Es�dkdk�, �16�

with

Fs1

��	� = P�
0

� fs1

��	 − E1���E1�

	 − E1
dE1.

Here, �̃=Es1
+Em1

+Em2
−Es and �d� is the mean distance be-

tween two adjacent ions, and to ease notation we have de-
fined fs

��	�= hG
k=�2m�	,s

�
, where hGs� hGs,s and � is the den-

sity of states. In order to derive the previous equations we
have used the limit of disordered ion distribution. Explicitly,
for a given function h we use the following approximation:

�
�,�1

h�R�1
− R��G�G�1

� h��d���
�

G��
�1

G�1
.

Similarly to the usual RKKY interaction, in �d we note
the appearance of the hole momentum in the dynamical and
spatially dependent coherent modulation of the ion-ion indi-
rect interaction. The RKKY interaction, in its usual formula-
tion, provides the hole-mediated static polarization of the
ions. To a positive sign of the interaction corresponds a
minimum-energy configuration where the hole spin is di-
rected in the opposite direction with respect to the adjacent
ions’ spins. This effect selects a preferred spin-alignment di-
rection and does not involve a dynamical spin exchange be-
tween the holes and the magnetic ions. In our many-particle
expansion the static RKKY interaction appears through a
second-order bubble diagram �which is not reported here�;
the third-order diagram represents the dynamical correspon-
dent to the static RKKY interaction. Many authors have
pointed out the important role played by the ion-ion RKKY
interaction as being an important mechanism which governs
the presence or absence of long-ranged magnetic ordering,
for example, in connection with systems for which the
strength of the ferromagnetic and antiferromagnetic interac-
tions can be modified by varying the vacancy concentration
of the host lattice. For instance, Mn doped ZnO has antifer-
romagnetic interactions which can be turned to ferromag-
netic interactions in the presence of Zn vacancies.22,23

Furthermore we note that the explicit energy dependence
of the density of states influences remarkably the analyticity
properties of �. In fact � is an integrable function for a
three-dimensional �3D� hole systems �where �3D��E� while
it show an infrared nonintegrable divergence for a two-
dimensional �2D� system when the argument 	 goes to zero
and in particular we have that lim	→0 Fs1

�	�� log�	�. This
can be seen explicitly for T=0: in the 3D case we have

Fs1

0 �	� = lim
�→�

Fs1
�	� = �3D��Es1

− �s1
�

�2�Es1
− �s1

− �	 ln��Es1
− �s1

+ �	

�Es1
− �s1

− �	
	 , 	 
 0

2�Es1
− �s1

− �	 tan−1��Es1
− �s1

�	
	 , 	 � 0,�

which is regular in 	=0, and the divergence in Es1
−�s1

dis-
appears for T
0. For a 2D system,

Fs1

0 �	� = �2D��Es1
− �s1

�log� 	 − �Es1
− �s1

�

	
� ,

and the singularity is not removed for T
0.
The presence of a singularity �which is typically defined

as an infrared divergence� in the description of the ion-hole
scattering processes generally rises when a high-order pertur-
bative expansion is used to treat the Kondo interaction. In the
classical formulation of the Kondo problem, the infrared di-
vergence is strictly connected with the presence of a high
density of states in correspondence to the Fermi level.1,24 In
a doped semiconductor device, the Fermi level is located
near the band edge and the density of states strongly depends
on the dimensionality of the gas carriers. Based on this
simple consideration we observe that the hole spin evolution
in a DMS exhibits a strong similarity with the standard Kon-
do’s problem in the case of a 2D hole gas for which the
density of states is constant. To the contrary, in our model, a
regular behavior of the polarization propagator is expected in
the limit of a 3D hole gas for which the singularity of the
denominator of F is compensated by the vanishing of the
density of states in correspondence to the band edge. The
semiconductor host lattice of a DMS provides the interesting
property that the many-particle spin interaction becomes
stronger when the thickness of the quantum confinement is
reduced. In the limit of a two-dimensional hole gas the hole-
ion spin interaction reduces to the standard Kondo interac-
tion. Logarithmic divergences of the polarization propagator
are found also in different contexts. For example, in the
framework of the drone theory, the Kondo interaction gives
rise to a third-order singular scattering in which the electron-
drone Green’s propagator diverges when the particle energy
approaches the Fermi level.25 Nonperturbative self-consistent
renormalization techniques are applied to treat the unphysi-
cal pole corresponding to the Kondo temperature and are
able, for example, to reproduce the low resistivity behavior
of copper-iron alloy.26 A similar problem has been also found
in the context of the singular behavior of the x-ray photo-
emission of a metal where a core electron is injected in the
conduction band leaving a “deep hole” which strongly inter-
acts with the Fermi gas. In this case, a logarithmic diver-
gence appears in the limit of t /�B going to infinity, where t is
the time and �B is the conduction bandwidth.

In our problem the standard renormalization technique
can be used to deal with systems of reduced dimensionality.
For the sake of clearness we describe the renormalization
procedure applied to the function �b; the other terms can be
treated similarly. By summing over the tadpole diagrams we
obtain the new polarization propagator27
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�m�,m,s�,s
� �k�,k� = �

n=1

�

�
mi,si,ki

�m�,m1,s�,s1
�k�,k1��m1,m2,s1,s2

�k1,k2� ¯ �mn−1,m,sn−1,s�kn−1,k�

n

,

�m�,m,s�,s�k�,k� � �
�,��

��,���m�,m,s�,s
b eiR��k−k�� = �m�,m,s�,s�Ek���Ek − Ek� + �m,s�

m�,s� ,

where we write explicitly the delta term present in the defi-
nition of �b and consequently � can be deduced from Eq.
�15� and we defined m0=m�, mi=m1 ,m2 , . . . ,mn−1 and the
same for ki, si. After some algebra we obtain �the details of
the calculation are given in the Appendix�

�m�,m,s�,s
� �k�,k� = �s̄,s���Ek − Ek� + �m,s�

m�,s�


�s̄,s�Ek�

1 − �2�Ek��s,s̄�Ek − �s
s̄��s̄,s�Ek�

,

�17�

where s̄�−s, �s�
s =Es−Es�+Em−Em+sgn�s�, and to ease nota-

tion we define �s�,s=�m�,m,s�,s.

III. NUMERICAL RESULTS

The present work focuses on a III-V semiconducting host,
GaAs, and a magnetic element, Mn, in the low concentration
regime. In particular, we consider a sample consisting of a
magnetic layer with a Mn concentration of 5% deposited on
a GaAs buffer layer and a semi-insulating GaAs substrate.
The background hole density is chosen to be 1020 cm−3.

The study of the time evolution of the total magnetization
in a GaMnAs DMS for magnetic layers thickness on the
order of a few hundred nanometers has been given in Ref. 8.
In such a large system the hole confinement provided by the
semi-insulating substrate has no important influence on the
spin interaction and, for our purposes, one can safety assume
that this configuration corresponds to a nearly-free 3D hole
gas. The analysis of the polarization propagator given in Sec.
II C has shown that the third-order corrections to the ion
correlations are mainly important for a 2D hole gas. There-
fore, in the present section, our attention is focused on the
study of a DMS with tiny magnetic layers �2D DMS�. Equa-
tions �8�–�10� with Eq. �17� have been solved in order to
study the role played by the third-order corrections on the
time evolution of this sample after laser irradiation.

The initial hole and ion distributions are calculated using
the stationary mean-field Zener model.28 The laser pulse ex-
citation is assumed to take place at t=0+ and according to the
discussion of Ref. 6 its main effect is to rise instantaneously
the initial temperature of the hole gas. Details and justifica-
tions of the laser heating processes based on physical
grounds are given in Refs. 8 and 29. Let us note that the band
parameters of a confined system can be very different from
those of the same material in the bulk. Modifications of the

optical and transport properties of confined semiconductor
materials are due to various effects the most important ones
being the stress field and the quantification of the band state
along the growth direction. Since in the present work we are
interested to highlight the effect of the renormalization pro-
cedure on the polarization propagator ��, we have used an
oversimplified description of the band structure consisting of
a single nondegenerate parabolic heavy-hole band. The in-
clusion of the light hole band in our formalism is straightfor-
ward but the computational cost would increase heavily.
Theoretical studies have proved that in an unstrained semi-
conductor the heavy-hole–ion interaction is stronger than the
light-hole–ion one.30,31 Furthermore, the confinement in a
GaAs quantum well �which is considered in the present
work� strongly reduces the maximum of the light-hole band,
so that its effect on the magnetization dynamics can be ne-
glected �see, for example, Ref. 32�. In Ref. 17 the role played
by the quantum confinement and the band structure on the
magnetization dynamics is analyzed. The mini-band struc-
ture has been computed by using a microscopic approach and
only second-order effects in the spin-exchange interaction
have been included. A forthcoming publication will be de-
voted to the inclusion of both third-order correlation effects
and the detailed band-structure calculation for a 2D DMS.

In Fig. 2 we compare the numerical solution of a second-
order model with respect to the third-order model of Eqs.
�8�–�10�. We represent the time evolution of the differential
magnetization �M defined as �M�t���Mtot�t�
−Mtot�0�� /Mtot�0�, where Mtot= �Mz�NM + �Sz�Nh with �Mz�
=�mmnm and �Sz�=�ssns as the mean values of the ion and
hole spins, respectively. The initial temperatures of the sys-
tem before the laser excitation are 50 K �Fig. 2�a�� and 30 K
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0
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δ
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δ M
m

0 50 100 150
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δ
M

(a) (b)

FIG. 2. �Color online� Time evolution of the normalized quan-
tity �M�t���Mtot�t�−Mtot�0�� /Mtot�0�. The dashed �continuous�
line represents the solution obtained from a second-�third-� order
approximation of the polarization propagator. The hole background
density is nh=1020 cm−3 and the initial temperatures Th are �a� Th

=50 K and �b� Th=30 K.
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�Fig. 2�b�� and the laser fluence Pf is 10 �J cm−2.
Our simulations show that after the laser excitation, the

magnetic impurities strongly interact with the out-of-
equilibrium hole gas and a redistribution of the spin polar-
ization is obtained. In particular, since the photoexcited holes
experience efficient spin-spin scattering with the localized
Mn magnetic moments, a net spin polarization is transferred
from the ion impurities toward the hole system. This polar-
ization is efficiently dissipated via the spin-orbit coupling,
which leads to a net decrease in the total spin magnetization.
During this ultrafast demagnetization regime the hole gas
loses its energy via carrier-phonon scattering and the hole
and ion spins begin to align, allowing the system to recover
its initial ferromagnetic order.

The numerical simulations reveal that the third-order
terms give a correction to �M on the order of 10%. This is a
non-negligible contribution to the macroscopical time evolu-
tion of the total magnetization which can be, in principle,
experimentally measured.

As pointed out in Ref. 6 the time evolution of the magne-
tization of a strongly out-of-equilibrium excited DMS can be
affected by “spin bottleneck,” which is a phenomenon where
the characteristic time of the demagnetization processes is
reduced due to the lack of an efficient microscopic spin
transfer between the ions and the hole gas. Our findings
show that the inclusion of a further mechanism of spin ex-
change between the ions and the holes as the third-order
Kondo exchange processes, partially reduces �or compen-
sates� the spin bottleneck observed in similar structures.

Finally, in Fig. 3 we report the minimum of the differen-
tial magnetization �Mm for different values of the laser flu-
ence and obtained at second-order �dashed line� and third-
order �continuous line� levels of approximation. The
simulations show that the relative correction becomes less
and less important when the power of the laser increases. As
shown in Eq. �15�, one of the relevant differences between
the one- site �second- and third-order terms� and the two-site
third-order terms is the RKKY- like form of the latter, where
the sinus of the product between the hole momentum and the
mean ion-ion distance is present in the integral. When the
laser power increases, the hole states with high momentum

are more and more populated and, due to the oscillating form
of the interaction, the contribution of these high-energy
states tends to cancel, justifying a relative lowering of the
two-site third-order terms. Furthermore, as already pointed
out, also the sign of the third-order interaction given in Eq.
�15� depends on the mean distance between two nearest mag-
netic ions. In particular, one can expect a completely differ-
ent behavior of the third-order contribution if a disordered
system with dislocations or Mn interstitial inclusions is in-
vestigated. The numerical complexity related to the numeri-
cal solution of Eqs. �8�–�10� prevents us to apply our model
to highly nonhomogeneous structures.

IV. CONCLUSIONS

Ultrafast magnetization dynamics in diluted magnetic
semiconductors is investigated using a theoretical model
based on the pseudofermion formalism and a third-order
many-particle expansion of the Kondo spin-exchange inter-
action. Differing from the standard RKKY approach, our the-
oretical methodology does not rely on crude simplifications
and hypothesis in the description of the hole state which is
treated here in a out-of-equilibrium regime. Dynamical
RKKY-like interactions and double-exchange mechanism
based on the exact Kondo interaction emerge naturally from
the pseudofermion approach. Furthermore, our method is
able to treat dynamically particle-particle correlations be-
yond the mean-field approximation and provides a theoreti-
cal framework allowing the inclusion of a detailed descrip-
tion of materials with complex chemical composition or/and
with complex magnetic ordering such as antiferromagnets
and spin glasses. The analysis of the third-order Green’s
function reveals that the many-particle expansion is not gen-
erally well defined and an infrared Kondo-like divergence
can occur. In particular, the bare polarization propagator fails
to converge for a two-dimensional DMS and a regular be-
havior is found for 3D systems. As a final result, our ap-
proach predicts an enhancement of the spin-spin correlation
in the case of reduced-dimensionality systems. Numerical
simulations have been performed on GaMnAs and show that
dynamical many-particle correlations play a significant role
in the time evolution of the total magnetization. Therefore,
we conclude by saying that dynamical correlations studied
here should play an important role in the ultrafast magneti-
zation dynamics observed with pump-probe magneto-optical
spectroscopy.
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APPENDIX: RENORMALIZATION OF �

A detailed derivation of Eq. �17� is given here. Let us
consider a spin-flip process assuming m��m and s�=−s. To
ease notation we define �s�,s�k� ,k���m�,m,s�,s�k� ,k�, �s�,s
��m�,m,s�,s, and
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FIG. 3. �Color online� �Mm as a function of the laser fluence.
The dashed �continuous� line represents the solution obtained from
a second- �third-� order approximation of the polarization propaga-
tor. The quantity �Mm is defined in Fig. 2�a�.
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�̃si,si+2
�ki,ki+2� � �

si+1,ki+1

�si,si+1
�ki,ki+1��si+1,si+2

�ki+1,ki+2� = �̃si,si+2
�ki,ki+2���Eki

− Eki+2
��si,si+2

,

with

�̃si,si+2
�ki,ki+2� � ��Eki

+ �si

s̄i��si,si
�Eki

��si,si
�Eki

+ �si

si� ,

where s̄�−s and �s�
s =Es−Es�+Em−Em+sgn�s�. We separately consider the parts with an even or odd number of factors. Thus,

we have

�m�,m,s�,s
� �k�,k� = �s�,s�k�,k� + �

n=3,5,. . .

�

�
si,ki

�s�,s1
�k�,k1��̃s1,s3

�k1,k3��̃s3,s5
�k3,k5� ¯ �̃sn−2,s�kn−2,k�

�n−1�/2

+ �
n=2,4,. . .

�

�
si,ki

�̃s�,s2
�k�,k2��̃s2,s4

�k2,k4� ¯ �̃sn−2,s�kn−2,k�

n/2

= �s̄,s���Ek − Ek� + �m,s�
m�,s�

�s̄,s�Ek�

1 − �2�Ek��s,s̄�Ek − �s
s̄��s̄,s�Ek�

+ �s,s���Ek − Ek���
n=1

�

���Ek��̃s,s�k,k��n.

The second term gives no contribution to W and we finally obtain

�m�,m,s�,s
� �k�,k� = �s̄,s���Ek − Ek� + �m,s�

m�,s�
�s̄,s�Ek�

1 − �2�Ek��s,s̄�Ek − �s
s̄��s̄,s�Ek�
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